Multi-Objective Particle Swarm Based Optimization of an Air Jet Impingement System
نویسندگان
چکیده
منابع مشابه
Multi-objective Particle Swarm Optimization Algorithm for Recommender System
This paper models the process of a recommender system as a multiobjective optimization problem, a discrete particle swarm optimization framework is established and has been integrated into multiobjective optimization, consequently, a multiobjective discrete particle swarm optimization algorithm is proposed to solve the modeled optimization problem. Each run of the current mainstream recommender...
متن کاملA Multi-Objective Hybrid Particle Swarm Optimization-based Service Identification
Service identification step is a basic requirement for a detailed design and implementation of services in a Service Oriented Architecture (SOA). Existing methods for service identification ignore the automation capability while providing human based prescriptive guidelines, which mostly are not applicable at enterprise scales. In this paper, we propose a top down approach to identify automatic...
متن کاملGPU-Based Parallel Multi-objective Particle Swarm Optimization
In the recent years, multi-objective particle swarm optimization (MOPSO) has become quite popular in the field of multi-objective optimization. However, due to a large amount of fitness evaluations as well as the task of archive maintaining, the running time of MOPSO for optimizing some difficult problems may be quite long. This paper proposes a parallel MOPSO based on consumer-level Graphics P...
متن کاملR2-Based Multi/Many-Objective Particle Swarm Optimization
We propose to couple the R2 performance measure and Particle Swarm Optimization in order to handle multi/many-objective problems. Our proposal shows that through a well-designed interaction process we could maintain the metaheuristic almost inalterable and through the R2 performance measure we did not use neither an external archive nor Pareto dominance to guide the search. The proposed approac...
متن کاملMulti-Objective Design Optimization of a Linear Brushless Permanent Magnet Motor Using Particle Swarm Optimization (PSO)
In this paper a brushless permanent magnet motor is designed considering minimum thrust ripple and maximum thrust density (the ratio of the thrust to permanent magnet volumes). Particle Swarm Optimization (PSO) is used as optimization method. Finite element analysis (FEA) is carried out base on the optimized and conventional geometric dimensions of the motor. The results of the FEA deal to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2019
ISSN: 1996-1073
DOI: 10.3390/en12091627